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Abstract

Accurate quantification of the MRSI-observed regional distribution of metabolites involves relatively long processing times. This is
particularly true in dealing with large amount of data that is typically acquired in multi-center clinical studies. To significantly shorten
the processing time, an artificial neural network (ANN)-based approach was explored for quantifying the phase corrected (as opposed to
magnitude) spectra. Specifically, in these studies radial basis function neural network (RBFNN) was used. This method was tested on
simulated and normal human brain data acquired at 3T. The N-acetyl aspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate +
glutamine (Glx)/Cr, and myo-inositol (mI)/Cr ratios in normal subjects were compared with the line fitting (LF) technique and
jMRUI-AMARES analysis, and published values. The average NAA/Cr, Cho/Cr, Glx/Cr and mI/Cr ratios in normal controls were
found to be 1.58 ± 0.13, 0.9 ± 0.08, 0.7 ± 0.17 and 0.42 ± 0.07, respectively. The corresponding ratios using the LF and jMRUI-
AMARES methods were 1.6 ± 0.11, 0.95 ± 0.08, 0.78 ± 0.18, 0.49 ± 0.1 and 1.61 ± 0.15, 0.78 ± 0.07, 0.61 ± 0.18, 0.42 ± 0.13, respec-
tively. These results agree with those published in literature. Bland–Altman analysis indicated an excellent agreement and minimal bias
between the results obtained with RBFNN and other methods. The computational time for the current method was 15 s compared to
approximately 10 min for the LF-based analysis.
� 2006 Elsevier Ltd All rights reserved.
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1. Introduction

Proton magnetic resonance spectroscopic imaging
(MRSI) or multi-voxel magnetic resonance spectroscopy
(MRS) can noninvasively provide tissue biochemical infor-
mation and has the potential for improving pathologic
specificity [1]. Usually, the MRSI quantification procedures
involve manual intervention and extensive computational
time. Currently, the most commonly used quantification
methods are based on line fitting (LF) using a nonlinear
least squares optimization, such as Levenberg–Marquardt
algorithm [2–5]. All these procedures involve relatively long
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computational times. This problem becomes even more
acute for 3D MRSI data and multi-center clinical trials
where a large amount of data needs to be processed. For
MRSI to become a routine clinical tool there is a need to
completely automate the quantification procedures and
reduce the processing times close to real-time. Such a goal
could possibly be realized using methods based on artificial
neural networks (ANN). The ability of ANN for classifica-
tion of spectra for various pathologies has been demon-
strated [6–14]. However, relatively little attention has
been paid to metabolite quantification using ANN
[15,16]. Recently, ANN has been used to develop automat-
ed methods to quantify MRS data [15,16]. These studies
demonstrated a high correlation between the areas of
metabolite peaks computed with ANN and LF methods.
However, these techniques were limited to either single
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voxel MRS or magnitude spectral data acquired at long
echo times (or TE). There is an increasing interest in short
echo time MRSI for visualizing short T2 metabolites for
improved tissue pathology [17]. In addition, analysis of
phased spectra provides more accurate quantification of
metabolites. However, short echo time MRSI suffers from
relatively ill defined baseline and is more difficult to
analyze. The above studies also employed Lorentzian
lineshapes in their analyses. It is well known that the Voigt
lineshape provides a better approximation of the observed
lineshapes compared to Lorentzian or Gaussian alone [18].

In the current studies, we have explored the use of radial
basis function neural network (RBFNN) to overcome
many of the limitations of the previously published studies.
This technique was applied for automatic quantification of
short echo time, multi-voxel, phased spectral data. In the
present study, the RBFNN was trained with simulated Voi-
gt line shapes to achieve quantitative values. The baseline
and first order phase corrections were included in the pre-
processing steps. The inclusion of magnetic field inhomoge-
neity correction in the present approach further improved
the quality of analysis. Both single and overlapping (two
and three) peaks were included in training the network to
make the technique more general. Since the network is
trained in a generic manner, inclusion of additional reso-
nances for quantification does not require retraining the
network. The robustness of RBFNN in the presence of
noise and phase distortion was demonstrated using simu-
lated data. Bland–Altman analysis [19] was performed for
comparing the metabolite ratios, NAA/Cr, Cho/Cr, Glx/
Cr and mI/Cr computed on 7 normal controls using the
RBFNN and the LF methods. All the area ratios were
computed relative to the Cr peak at 3.03 ppm.

2. Materials and methods

2.1. Spectroscopic data acquisition

Two-dimensional MRSI was acquired on a 3 T Philips
Intera scanner using the PRESS localization and 24 · 24
phase encoding steps. The sequence parameters were:
TR = 1500 ms, TE = 39 ms, field of view = 240 mm ·
240 mm · 12 mm, spectral width = 2000 Hz, and number
of points = 1024. Spectroscopic volume was contained
within the centrum semiovale region of the brain with min-
imal CSF contamination. Unsuppressed water spectra with
identical sequence parameters, except for 12 · 12 phase
encoding steps, were acquired for automatic phase correc-
tion and inter-voxel spectral alignment [2]. Data were
acquired on seven normal controls (NC).

2.2. Data processing

The flowchart depicting various steps involved in the
RBFNN-based metabolite quantification is shown in
Fig. 1. Implementation of each individual step is described
below.
2.3. Preprocessing

All the FIDs were DC shifted by taking the average of
the last one-eighth complex points of the FID. Hanning fil-
ter was used for apodization along the spatial dimensions.
Zero order phase correction was performed by multiplying
the complex points of the suppressed dataset by the com-
plex conjugate of the unsuppressed data normalized to its
magnitude data [20,21]. Residual water peak was sup-
pressed by low frequency filtering for improved baseline
flatness as described elsewhere [2]. Spectral resolution in
each voxel was enhanced by zero filling the FID to 4096
points. The inter-voxel spectral alignment was performed,
on a voxel-by-voxel basis, using the unsuppressed water
signal. An automatic first order phase correction was per-
formed as described elsewhere [2].

2.4. Baseline correction

Spectra acquired at short echo times contain broad
unresolved peaks from macromolecules which have short
T2 and distort the baseline that affects spectral quantifica-
tion. In the LF-based approaches for quantitative MRS
analysis, the baseline is usually modeled by polynomials
or B-splines [5]. In the present study, spectra were corrected
for baseline using the wavelet shrinkage approach [22].
This approach involved two steps: (1) baseline recognition
and (2) baseline characterization. In the baseline recogni-
tion step, all the known metabolite peaks (NAA, Cr,
Cho, Glx and mI) were automatically identified based on
their position information (known a priori) and the sign
of the first derivative of the amplitude with respect to fre-
quency (computed using finite differences). For better esti-
mation of the baseline, any remaining narrow metabolite
peaks were separated from the baseline in the baseline rec-
ognition step. This was achieved by utilizing the signal
power criterion [23]. This involved computation of
rsig, which is the mean of the variances of the signal in
the NAA, Cr and Cho peaks. To determine whether a point
in the spectrum belongs to a peak or baseline, a rectangular
window was placed around that point and the variance, rw,
of the spectral points within the window was computed.
This spectral point was considered to be part of the base-
line if

rw < W � rsig ð1Þ
or else it was considered to be a part of a metabolite peak.
Applying the above procedure on a large number of data
with different values of the weighting factor, W, we ob-
served that the narrow peaks and baseline were well distin-
guished for the value of W = 0.5. Once all the narrow
peaks in the spectrum were identified then each peak was
replaced by a straight line connecting the end points of
the base of the peak.

The procedure for baseline characterization was similar
to that suggested in Ref. [22]. The spectra were subjected to
a discrete wavelet transformation (DWT). To ensure the



Fig. 1. Flow chart summarizing various steps involved in the spectral quantification using RBFNN.
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broadness criterion for the baseline, all the wavelet coeffi-
cients at a scale smaller than the peaks of interest were zer-
oed. The biorthogonal spline wavelets were used for the
decomposition. The spectrum was subjected to DWT up
to six levels and all the coefficients at level 5 and smaller
were zeroed. The remaining coefficients were thresholded,
based on denoising criterion [24]. The baseline estimate
was obtained by performing an inverse wavelet transform
on the remaining coefficients. The estimated baseline was
subtracted from the phased spectrum.

2.5. B0 field inhomogeneity correction by water reference

deconvolution

The magnetic field (B0) is generally nonuniform across
the spectroscopy slab. The field inhomogeneity distorts
the lineshapes and this distortion varies from voxel-to-vox-
el. This can lead to poor resolution and significant overlap
between adjacent peaks like Cr and Cho, making accurate
quantification difficult. In the present study we have
employed water reference deconvolution for correcting
the B0 field inhomogeneity as suggested elsewhere
[20,21,25,26] and implemented for MRSI by Maudsley
et al. [3]. We used as target lineshape for reference decon-
volution a Lorentzian with width equal to that of the
sharpest unsuppressed water peak measured, i.e., the water
peak from the voxel with the most uniform magnetic field.
Unlike most of the existing approaches that use a fixed val-
ue for the target linewidth, our procedure makes the target
linewidth adaptive to each MRSI acquisition. It is impor-
tant to point out that Lorentzian lineshape is assumed only
for implementing the water reference deconvolution, and
not for spectral quantification, for mathematical simplicity.
The distortion function gn(t) was estimated for each voxel
as described by Metz et al. [27]. Direct division of the
FID (xn(t)) by the distortion function (gn(t)) in the time
domain (deconvolution in the frequency domain) leads to
ringing in the corrected spectrum. To avoid this ringing
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we have applied the Wiener filtering approach. Mathemat-
ically this can be written as [28]

x�n ðtÞ ¼
1

gnðtÞ
jgnðtÞj

2

jgnðtÞj
2 þ KnðtÞ

" #
xnðtÞ ð2Þ

where, the subscript n stands for the voxel number, xn(t),
x�n ðtÞ and gn(t) are the input and corrected FIDs and the
distortion function for a particular voxel. The value
Kn(t), contains information about the noise present in the
signal. Ideally, for very noisy data, Kn(t) should be high
and for low noise data Kn(t) should be close to zero. We
have developed an approach, where the value of Kn(t)
was varied, based on the signal strength at each point in
the FID. The value of Kn(t) for each point of the FID
was computed as follows,

KnðtÞ ¼
Sn

xnðtÞx�nðtÞ
t ¼ 1; 2; . . . ;N ð3Þ

where xn(t) is a complex point of the FID and x�nðtÞ is its
conjugate. The noise power Sn for a particular voxel was
computed using the vector xn corresponding to the last
1/8th points of the FID, as shown below.

Sn ¼
hxn; x

�
ni

N � 1
8

� � ð4Þ

where x�n is the complex conjugate of xn and N is the num-
ber of points in the FID. Thus the inverse filtering problem
was fully automated taking into consideration both the de-
gree of noise present in the signal and the distortion func-
tion. The efficiency of Wiener filtering approach compared
to the inverse filtering with fixed threshold was demonstrat-
ed with simulated and human brain data. The simulations
were performed in the time domain, using the following
equation.

xj ¼ ae �atj ei2pvtj þ ej j ¼ 0; 1; . . . ;N � 1 ð5Þ

where v and ej represent the position of the peak and addi-
tive noise, respectively. a, a are related to the half width at
half maximum (HWHM) and height of the peaks (in fre-
quency domain) as shown below [29],

HWHM ¼ a
2p

ð6Þ

Height of real part ¼ a
a

The spectral data with peaks, NAA, Cr and Cho were sim-
ulated using Eqs. (5) and (6). These simulations were only
meant to compare the Wiener filtering approach with in-
verse filtering with a fixed threshold. The HWHM and
amplitudes of the peaks were varied randomly. Gaussian
noise was added to each of the three peaks for a realistic
simulation. A sample distortion function g(t), which was
obtained from experimental data [27] was applied to the
simulated spectrum for generating the distorted spectrum.
The Wiener filter and inverse filter with fixed threshold
were then applied to the distorted data to obtain the cor-
rected spectrum. The normalized energy of the difference
between the estimated and actual spectrum, referred to as
the L2 error, defined as

err ¼
PN

j¼1 zj � z0j
� �2

PN
j¼1ðzjÞ2

ð7Þ

was computed. In the above equation, zj and z0j represent
the real parts of the original and corrected spectra,
respectively.

2.6. Quantification with RBFNN

RBFNN has the property of modeling any nonlinear
function in a single layer [30], thus avoiding the design deci-
sion about the number of hidden layers to be used in the
network. Also RBFNN has faster training speeds com-
pared to the multilayer perceptron (MLP) [30]. Thus
RBFNN was used for spectral quantification in the current
studies. The strategy we used was to design a generic net-
work to quantify any peak which is given as its input. This
eliminates the peak position as a variable. The peak only
needs to be identified from the spectrum and given to the
network as input. Fig. 2 shows the schematic representa-
tion of a two layer RBFNN for quantification of a single
peak in the MRSI data. The input vector is d-dimensional,
[a1, a2, . . . ,ad]. This is basically the entire peak that needs to
be quantified. The peak is automatically identified from the
spectrum based on its position information (known a priori)
and the sign of the first derivative of the amplitude with
respect to frequency. There is only a single hidden layer
which computes the nonlinear function /c (basis function),
based on the distance of the input vector from the center of
the particular unit lc. The function /c is a nonlinear func-
tion such as Gaussian, thin-plate spline, multiquadratic,
etc. The Gaussian function is most commonly used as it
is localized and has a number of useful analytical proper-
ties [30]. For these reasons, we have used the Gaussian
function for the hidden layer.

/cðaÞ ¼ exp � a� lck k2

2r2
c

 !
ð8Þ

where, a: d-dimensional input vector, lc: d-dimensional
vector determining the center of the basis function, rc: var-
iance or width of the basis function.

Here the basis functions are assumed to be spherical,
i.e., all the variances are equal and the covariances are 0.
The second layer or output layer is purely linear and it
computes a weighted combination of the outputs of the
hidden layer. For the kth output, this is mathematically
expressed as

yk ¼
XM

c¼1

wck/c a� lck kð Þ ð9Þ



Fig. 2. Schematic representation of two layer RBFNN. The input spectrum is a d-dimensional vector. The basis functions are shown in the hidden layer.
Outputs of the network are amplitude HWHM and fraction of the Lorentzian component of the peak.
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where, wck is the weight of the basis functions in the final
output, yk, of the network and M is the number of basis
functions in the network. These weights were computed
during training as described below. For the present appli-
cation there are three outputs as shown in Fig. 2: ampli-
tude, line width, and the proportion of the Lorentzian
component in the peak. These three parameters provide a
parametric representation of the peak that can be used
for computing its area.

2.7. Training the network

The RBFNN was trained in two stages. In the first stage,
the centers (positions), widths, and number of basis func-
tions were fixed. This stage of training is unsupervised. In
the second stage the weights were computed. The error,
E(w), that is minimized during the second stage is a func-
tion of the weights and is given by:

EðwÞ ¼ 1

2

X3

k¼1

XP

j¼1

XM

c¼1

wck/cðajÞ
 !

� t
j
k

" #2

ð10Þ

where tj
k is the targeted output for the input vector a j, P is

the number of input vectors in the training set and M is the
number of basis functions in the network This training
stage was supervised and involves a simple matrix opera-
tion given by,

W ¼ ðUTUÞ�1U TT ð11Þ

where W, U and T are the corresponding matrices for the
training set. This was solved using the singular value
decomposition.

Simulated peaks, based on the approximation to the
Voigt line shape (Eq. (12)), were used to train the RBFNN.

F ðvÞ ¼ lLðvÞ þ ð1� lÞGðvÞ ð12Þ
where the Lorentzian peak is defined as,
LðvÞ ¼ b

1þ v�vo

h

� �2
ð13Þ

and the Gaussian peak is defined as,

GðvÞ ¼ b exp � lnð2Þ v� v0

h

� �2
� �

ð14Þ

In the above equations, b is the amplitude, h is the
HWHM, v0 is the central frequency, l is the proportion
of Lorentzian (varies from 1 for pure Lorentzian to 0 for
pure Gaussian). For training the net Gaussian noise was
added as shown in the following equation:

X ðvÞ ¼ F ðvÞ þ en ð15Þ
where en is the additive Gaussian noise. In the simulations
the amplitude, HWHM (Hz), and l were varied in the
ranges of 0–1.5, 0.975–6.84 and 0–1, respectively. These
ranges are typically encountered in the experimental data.
Gaussian noise of 3% of the maximum amplitude of the
peak was added to the input peaks during training, to make
the networks more robust. Since the peaks were identified
locally in each spectrum, the dimension of the input vector
could be variable. To take care of this problem, multiple
RBFNN’s with wide range of input vector lengths were
trained. The RBFNN with the input vector length closest
to the identified peak was automatically chosen for
quantification.
2.8. Positions and widths of basis functions

The simulated peaks with the range of parameters indi-
cated above were used to select the basis functions. A
Gaussian mixture model (GMM), with parameters opti-
mized using expectation maximization algorithm [30–32],
was generated using the set of peaks. The centers of the
GMM were then used as the basis functions for the net-
work. The width of each function was set to the maximum
squared distance between the centers.
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2.9. Computation of weights

The weights in the second layer were computed based on
the input–output pairs as specified in Eq. (11). The input
was the set of simulated spectral peaks along with noise
and the output was the corresponding amplitude, half
width and fraction of Lorentzian for that peak.
2.10. Number of centers/basis functions

The early stoppage criterion was used to select the opti-
mal number of centers for the RBFNN. The number of
centers was varied from 40 through 140 with a step size
of 20, and multiple RBFNN’s were trained. Errors were
computed for two types of input datasets: (1) with no noise
and (2) with 5% noise. The point at which the input set with
5% noise had minimum error was chosen as the number of
centers for the final network. The errors with no noise data
were used to observe the asymptotic decrease in the error.
2.11. Overlapping peaks

The methodology explained above was based on identi-
fying and quantifying a single peak at a time. This single
peak strategy works well for resonances such as NAA
(2.02 ppm), which are well resolved, but is prone to failure
in the case of overlapping peaks. In order to account for
such overlap, two separate RBFNN’s, which simultaneous-
ly estimate two and three overlapping peaks, were trained.
These networks were trained using simulated data and the
same criterion as stated earlier. The number of centers in
these two and three overlapping peaks networks was 344
and 500, respectively. In the current studies, the 2.25–
2.5 ppm spectral region that has three resonances [33–36]
from glutamate and glutamine (collectively referred to as
Glx) was quantified using three overlapping peaks. The
myo-inositol (3.52 and 3.61 ppm) peaks [33,36] were quan-
tified by the network based on two overlapping peaks.
When the magnetic field homogeneity is suboptimal, the
Cr (3.19 ppm) and Cho (3.03 ppm) peaks also exhibit some
overlap. Therefore, this region was quantified using both
single and two overlapping peaks. The result which had
minimum L2 error (Eq. (7)) between the input and estimat-
ed peaks was automatically selected for the final
quantification.

In addition to the above resonances, the Glx (3.75 ppm)
and Cr (3.91 ppm) resonances were estimated by the single
peak estimation strategy, since they are well resolved. All
the peak assignments were based on Ref. [33–36].
2.12. Computation of areas

Following the estimation of the amplitude b, HWHM,
and proportion of Lorentzian l for each peak, the area,
which is proportional to the metabolite concentration,
was computed using the analytical expressions given below.
The areas of the Lorentzian and Gaussian peaks can be
expressed as [29]

AðlÞ ¼ bhp ð16Þ

AðgÞ ¼ bh
ffiffiffiffiffiffiffiffiffiffiffi

p
lnð2Þ

r
ð17Þ

The final area of the peak is computed as

Area of peak ¼ lAðlÞ þ ð1� lÞAðgÞ ð18Þ
2.13. Simulations

Simulations were performed in the frequency domain to
test the performance of the trained networks using the fol-
lowing equations:

LðvÞ ¼ h2b

h2 þ v� vp

� �2
cosð/pÞ �

hbðv� vpÞ
h2 þ ðv� vpÞ2

sinð/pÞ

ð19Þ

GðvÞ ¼ b exp
� lnð2Þðv� vpÞ2

h2

 !

� cosð/pÞ þ erfi
ffiffiffiffiffiffiffiffiffiffiffi
lnð2Þ

p ðv� vpÞ
h

� �
sinð/pÞ

	 

ð20Þ

X ðvÞ ¼ lLðvÞ þ ð1� lÞGðvÞ ð21Þ
where, b is the amplitude, h is the HWHM, /p is the phase
angle and vp is the position of the peak. The amplitude,
HWHM and the fraction of Lorentzian were randomly
varied in the range indicated earlier. Noise and phase were
also incorporated to generate more realistic simulations.
Noise was varied between 0 and 10% of the maximum
amplitude and the phase was varied from 0 to 45�. A total
of 600 spectra were simulated for each value of noise and
phase. The performance of the network was assessed in
terms of two metrics: (1) correlation coefficient between
true value of the area and the value estimated by the net-
work and (2) the L2 error defined in Eq. (7).

Bland–Altman analysis [19] was used for objectively
evaluating the agreement between the ANN and LF
results. Bland–Altman method is a commonly used statisti-
cal technique for assessing the agreement between two
imperfect measures of the same variable. In this method
the difference between the two measurements of the same
variable (also referred to as bias) is plotted against the esti-
mate of the true value (mean of the two measurements). In
the present analysis, difference was computed by subtract-
ing the RBFNN-derived metabolic ratios for each voxel
in each subject from the corresponding values obtained
with the LF method. Generally the mean and mean ± 2
SD values of the differences are shown on these plots to
provide a visual estimation of both random and systematic
differences between the two measurements.

All the computations were performed on a 2.39 GHz.
Pentium 4 PC. Network was trained using the Netlab soft-



Fig. 3. Spectroscopic VOI (rectangular box) superimposed on the T2-weighted image in a normal volunteer. The ten outer volume suppression bands are
also shown in this figure. The spectra along with the voxel numbers are shown on the right.

Fig. 4. Baseline Correction. (a) Original phased spectrum (solid line)
overlaid with estimated baseline (dotted line) and (b) baseline corrected
spectrum.

Fig. 5. Comparison of the Wiener filter and inverse filtering with fixed
threshold for B0 inhomogeneity correction using the simulated data.
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ware [37] on the Matlab platform (Mathworks, Natick,
MA).

3. Results

As an example, Fig. 3 shows the spectroscopic VOI
along with the ten outer volume suppression bands, super-
imposed on a T2-weighted image from a volunteer. In this
figure, only spectra from inside the VOI are included. The
numbers shown in the spectra correspond to the voxel
number shown in the image.

3.1. Baseline correction

Fig. 4 shows an example of the baseline correction pro-
cedure. The dotted line in Fig. 4a shows the estimated base-
line overlaid on the original spectrum. Fig. 4b shows the
corrected spectrum obtained after subtracting the estimat-
ed baseline from original spectrum. The flat baseline in
the corrected spectrum is evident from this figure.

3.2. B0 inhomogeneity correction

Fig. 5 shows a plot of the normalized error between the
original and spectra corrected (Eq. (7)) using the Wiener fil-
tering and inverse filtering with fixed threshold for the sim-
ulated datasets. The Wiener filter produced errors that
were consistently lower than the inverse filter with a fixed
threshold, indicating the robustness of the Wiener filter-
based approach. Fig. 6 shows a human brain spectrum pri-
or to (a) and following the B0 correction using the inverse
filter with fixed threshold (b) and Wiener filter (c). The
effect of B0 correction is apparent from these figures. The
peaks which are broader and with considerable overlap
(Fig. 6a) have become narrower and better resolved in Figs.
6b and c after B0 correction. However, it can be seen that
the inverse filter with fixed threshold has introduced ring-
ing in the spectrum (b), which is absent in the Wiener cor-
rected spectrum (c). Our studies on both simulated and



Fig. 6. Effect of B0 inhomogeneity correction on the phased spectrum. (a)
Original spectrum, (b) deconvolution using inverse filter with fixed
threshold. (c) Wiener filter approach.

Fig. 7. . Error as a function of the number of centers used in RBFNN: (a)
error for input data with no noise, (b) error for 5% noise added in the
input. The position where the error in (b) reaches a minimum (marked
with the line) is selected as the optimal number of centers/basis functions.

Fig. 8. Simulation results for RBFNN estimation for two (a and b) and
three (c) overlapping peaks. (a) Simulated peaks with overlap (solid), and
summation of the two peaks estimated based on single peak strategy
(dotted line); (b) simulated peaks with overlap (solid) and estimation by
simultaneously taking both peaks as input and quantifying them after
taking the overlap into consideration (dotted line); (c) RBFNN for three
overlapping peaks. simulated peaks (solid), individual peak estimates
given by RBFNN (dotted—thin) and sum of the three estimated peaks
(dotted—thick).
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human brain data show the Wiener filter to be more effec-
tive than the inverse filter with fixed threshold in improving
data quality without introducing ringing artifacts in the
data.

4. Quantification with RBFNN

4.1. Number of centers

Fig. 7 shows the plots of number of centers against the
error computed with two types of input datasets. Fig. 7a
shows the error in the input set with no noise and
Fig. 7b shows the error in the input set with 5% noise.
The error in the input set without noise shows a monotonic
decrease with the number of centers and reaches an asymp-
totic value. In contrast, in the presence of 5% noise, the
error initially decreased with the number of centers, fol-
lowed by an increase. This increase can be attributed to
over fitting of the data. The number of centers was set to
the point where the error in the input set with 5% noise
reached a minimum.

4.2. Overlapping peaks

Fig. 8 shows the simulation results for the overlapping
peak estimation strategy. The solid line in Fig. 8a was pro-
duced using simulations such that the two peaks have sig-
nificant overlap. They were then quantified separately
using the RBFNNs and the sum was plotted as the dotted
line in Fig. 8a. The significant overestimation of the actual
peaks can easily be seen. The dotted line in Fig. 8b was
obtained from the neural network which considered the
overlap between the two peaks. The improvement in the
estimation of the peaks over that shown in Fig. 8a can eas-
ily be appreciated. Fig. 8c shows the results of the RBFNN
which estimates three peaks simultaneously. The solid line
represents simulated peaks with a high degree of overlap.
The thin dotted lines represent the three individual peaks



Fig. 10. Correlation using RBFNN quantification on simulated data as a
function of percentage noise and phase distortions.
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estimated by the RBFNN. The bold dotted line is the sum
of the three individual peaks and it is very close to the ori-
ginal input. It is clear that inspite of a high degree of over-
lap between the peaks the RBFNN has accurately
estimated all the three peaks.

4.3. Simulations

Figs. 9 and 10 show results of the simulation studies.
Fig. 9 shows the L2 error and Fig. 10 shows the correlation
coefficient between areas of the true and estimated peaks.
The true peak is the one which is free of noise and phase
distortion. The estimated peak was generated from the
parameter values estimated by the network, when the input
data was noisy and phase distorted. As can be seen from
Fig. 9 the error was nearly 0 at no noise and no phase con-
ditions. The error increased from this point as the phase
and noise increased. The maximum error was about 7%
at 10% noise and 45� phase distortion in the input peaks.
It can be seen from Fig. 10 that the correlation coefficient
for zero phase and zero noise was very close to 1. As the
noise increased from 0 to 10% and phase increased from
0 to 45�, the correlation coefficient dropped to 0.85. The
simulation studies suggest that the RBFNN quantification
approach is robust against noise and phase distortions in
the input peak.

4.4. Human brain data

Fig. 11a shows the phased spectrum from a normal vol-
unteer (solid), overlaid with the estimated baseline (dotted).
The flat baseline in the corrected spectrum can be seen in
Fig. 11b. The NAA (2.02 ppm), Cr (3.03 and 3.91 ppm),
Cho (3.19 ppm), Glx (2.25–2.5 and 3.75 ppm) and mI
(3.52 and 3.61 ppm) peaks were quantified with the
Fig. 9. Estimation of L2 errors using RBFNN quantification on simulated
data as a function of percentage noise and phase distortions.
RBFNN approach and the result (thick line) is shown
along with the original spectrum (thin line) in Fig. 11c.
The accuracy of the spectral estimation produced by the
RBFNN can be appreciated from the difference between
the original and estimated spectra shown in Fig. 11d. The
magnified Glx peaks (after baseline subtraction) from
2.25 to 2.5 ppm along with the estimated peaks are shown
for clarity in Fig. 11e. The excellent quality of the spectral
estimation in the presence of the overlapping peaks can be
appreciated.

The quantitative results obtained with the RBFNN
approach were also compared with quantification based
on the LF approach [38]. Fig. 12 shows the results of the
Bland–Altman analysis comparing the NAA/Cr (a), Cho/
Cr (b), Glx/Cr (c) and mI/Cr (d) ratios derived with the
RBFNN and LF methods. The differences in the values
are within two standard deviations indicating good agree-
ment between these two methods. As judged by the distri-
bution of these points around the zero bias line, the
RBFNN method did not introduce bias in the estimation
of the ratios of the area. The average area ratios for
NAA, Cho, Glx and mI relative to Cr (3.03 ppm), obtained
by the RBFNN and LF methods are shown in Table 1. The
values in Table 1 represent the mean ratios averaged over
all the voxels in all the subjects. The differences in the ratios
between the RBFNN and LF methods were not found to
be statistically significant. The data was also quantified
using the AMARES algorithm [39] using the jMRUI pack-
age (Version 3.0), a commonly used spectral analysis soft-
ware tool [40]. The Gaussian lineshape was used in
AMARES for the data quantification. The area ratios
obtained by this method are also shown in Table 1. The dif-
ferences between the NAA/Cr, Glx/Cr and mI/Cr ratios
using our method were not statistically significant with
those obtained with the jMRUI analysis. However, the



Fig. 11. RBFNN quantification of phased spectrum acquired on a normal volunteer: (a) phased spectrum (solid) overlaid with estimated baseline (dotted);
(b) following baseline subtraction; (c) spectrum estimated with RBFNN approach (thick) overlaid on the original spectrum (thin); (d) difference between
the estimate and true spectrum; (e) zoomed version of the Glx region from 2.25 to 2.5 ppm after baseline subtraction (thin) overlaid with the estimated
peaks (thick).

Fig. 12. The Bland–Altman plot comparing the NAA/Cr (a), Cho/Cr (b), Glx/Cr (c) and mI/Cr (d) ratios estimated with RBFNN and LF methods. The
x-axis represents the mean of the two methods and the y-axis represents the difference between the two methods (bias). Each point in this plot represents
one voxel in the multi-voxel data for all subjects.
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Table 1
Average metabolite area ratios for normal controls (N = 7) computed with RBFNN, LF and jMRUI-AMARES methods and published values

Metabolite area ratios NAA/Cr Cho/Cr Glx/Cr mI/Cr

RBFNN 1.58 (0.13)a,b 0.90 (0.08)a 0.70 (0.17)a,b 0.42 (0.07)a,b

LF (Rao et al. [38]) 1.60 (0.11) 0.95 (0.08) 0.78 (0.18) 0.49 (0.1)
jMRUI-AMARES [39,40] 1.61 (0.15) 0.78 (0.07) 0.61 (0.18) 0.42 (0.13)
Narayana et al. [41] 1.65 (0.1) 0.85 (0.12)
Webb et al. [42] 1.51 (0.1) 0.87 (0.1) 0.66 (0.07)
Naegele et al. [43] 0.6 0.85 0.6
Choe et al. [44] 1.37 0.84 0.54 0.8
Baik et al. [45] 1.38 0.87

Values are reported as mean (SD).
a Not statistically different from LF (Rao et al. [38]).
b Not statistically different from jMRUI-AMARES [39,40].
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Cho/Cr values showed difference with a p value of 0.03.
The ratios computed with the RBFNN also compared
favorably with those reported in literature [41–45]. The
slight variations in the area ratios between published and
our (RBFNN and LF) values are expected, since our values
are averaged over all voxels covering different brain tissue
types within the VOI whereas the published values are
based on single voxel measurements.

The mI/Cr ratio obtained by the current analysis
(RBFNN and LF) is slightly lower than that reported in lit-
erature [42–44]. This could be because the mI peak at
3.52 ppm is close to the water peak and the water suppres-
sion has a great effect on the quantitative values. It is inter-
esting to note that the mI/Cr area ratio of 0.42, obtained by
the RBFNN method is comparable to 0.38, which is the
value reported by Hattori el al. [36].

The computational time for the LF analysis, including
baseline correction, was approximately 10 min for each
subject while the corresponding time for the neural net-
work analysis was about 15 s per subject. This did not
include the preprocessing time (2–3 min) which was com-
mon to both LF and ANN methods.

5. Discussion

In these studies, we have applied RBFNN for automatic
quantification of proton MRSI data. This method has been
evaluated using both simulations and in vivo human brain
data. The simulations demonstrate our approach to be
accurate and robust to noise and phase distortions in the
input peaks. The area ratios obtained on normal subjects
compared favorably with the LF method and published
values. The differences in the NAA/Cr, Glx/Cr and mI/
Cr ratios obtained with RBFNN and jMRUI were not sta-
tistically significant. However, statistically significant dif-
ference was observed in the Cho/Cr values. This could be
possibly due different lineshapes used in these two methods.
The jMRUI package restricts the lineshapes to either
Gaussian or Lorentzian. In the RBFNN method we
employed Voigt lineshape. As indicated earlier, Voigt line-
shape is a better approximation than Lorentzian or Gauss-
ian alone [18]. It is also worth pointing out that Kanowski
et al. [46] have also observed lower Cho values with
AMARES compared with the LCModel. The concept of
using ANN for the analysis of MRSI is not new. Recently
ANN-based approaches for automated quantification of
MRSI data have been reported [15,16]. As pointed out ear-
lier these methods suffer from a number of limitations. In
the current studies, we have overcome many of these
limitations.

We have applied ANN for analyzing short echo time,
phased MRSI data. An advantage of long echo times is
that the baseline is relatively flat, making the analysis eas-
ier. However, at long echo times, information from short
T2 species such as lipids and glutamate, and glutamine is
lost. Thus, it is desirable to develop methods that quantify
phased spectral data at short echo times. A problem with
the short TE spectrum is the baseline distortions. In the
current studies we have used a wavelet shrinkage based
method, similar to the one suggested in Ref. [22]. In our
studies the sharp spectral peaks were identified and sepa-
rated from baseline using signal processing method [23]
as opposed to the simulated basis spectrum. In our proce-
dure even unknown sharp peaks present in the spectrum
would not be included in the baseline. Once the baseline
is identified, the characterization step is similar to the
wavelet shrinkage procedure.

Most of the published ANN techniques have analyzed
the magnitude data. Unless the full echo is acquired, the
magnitude data broadens the spectral peaks, particularly
around the baseline, and introduces significant errors in
the spectral quantification. Thus, it is desirable to analyze
the phased spectrum. In these studies, we have included
the automatic first order phase correction procedure sug-
gested in Ref. [2] into the preprocessing step. This allowed
us to train the network for analyzing the phased spectra,
rather than the magnitude data for improved spectral
quantification.

Generally, the magnetic field varies across the spectro-
scopic slab and introduces spectral distortion that varies
from voxel-to-voxel and significantly affects spectral quan-
tification. To overcome this problem a water peak decon-
volution approach [3] was adapted. However, application
of inverse filter without accounting for the voxel-based
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noise results in artifactual ringing. Failure to recognize and
eliminate this artifact would affect the spectral quantifica-
tion. In the current studies, this problem was minimized
by adapting the method based on Wiener filter approach.
The robustness of this automatic method has been demon-
strated both on simulations and spectral data acquired on
human brain.

In the present study, we have introduced the quantifica-
tion of a generic peak rather than the entire spectrum. This
approach facilitates the quantification of any metabolite
peak with the same neural network. This also significantly
reduces the dimension of the input vector and consequently
reduces the computational complexity and time. In order
to reduce the number of variables, the ANN-based
approaches assume a Lorentzian line shape and that all
the lines have the same width. These assumptions are not
valid. It is generally agreed that the Voigt lineshape is clos-
er to the observed lineshapes compared to Lorentzian or
Gaussian alone [18]. In these studies, we trained the net-
work using the Voigt lineshape. In addition, our method
does not assume equal line widths.

In proton MRSI, it is not uncommon to observe over-
lapping peaks. This overlap affects accurate spectral quan-
tification. We have addressed this problem by using
separate networks to quantify two and three overlapping
peaks. The effectiveness of this approach has been demon-
strated by quantifying the overlapping peaks that include
Cr, Cho, mI and Glx regions. The same approach could
be extended further to quantify more than three overlap-
ping peaks if the need arises. However, this requires addi-
tional training.

It is relatively straightforward to extend the proposed
method to determine the absolute concentrations. A simple
way to estimate the absolute concentrations is based on the
tissue water concentration [47]. We have discovered that on
our new scanner, the water peak in the unsuppressed spec-
trum and the metabolites in the suppressed spectrum are
scaled differently. The scaling factor appears to vary from
scan-to-scan and subject-to-subject. As soon as this prob-
lem is resolved, we plan to extend this technique for abso-
lute concentration determination.

A number of excellent software packages, such as LC
model [5], are available for spectral quantification. Many
of these packages involve minimal human intervention
and are capable of providing absolute concentrations, but
involve long processing times. However, the main advan-
tage of the proposed technique, compared to many of these
established methods, is its speed. Time efficient methods for
analyzing large amount of spectral data represent an
important advance to overcome the hurdle for routine clin-
ical applications of MRSI.

As indicated earlier the total processing time with the
current approach is around 15 s under the Matlab environ-
ment. Matlab is inherently inefficient in the presence of
large number of looping structures. Therefore it is possible
to reduce the processing time even further by porting the
code to a C/C++ platform.
It is important to point out that these studies must be
viewed as a preliminary step towards the real-time quanti-
fication of MRSI data. This approach needs to be validated
using data on a larger cohort acquired on different scanners
with different protocols. The effect of the wavelet based
baseline correction algorithm on quantitative values needs
to be critically evaluated. Even with many limitations, we
believe that this approach helps overcome a number of
problems that are inherent in many of the published
ANN-based methods for MRS quantification. The inher-
ently parallel nature of these computations makes this tech-
nique amenable to implementation under parallel
computing environment that could result in pseudo real-
time analysis.

6. Conclusions

A RBFNN-based method for fast quantification of
phased, as opposed to magnitude, MRSI data is presented.
Simulations show this method to be robust in the presence
of noise and phase distortions. The metabolite area ratios
for normal subjects determined using RBFNN compare
favorably with the published values. The spectral quantifi-
cation time on a typical PC was around 15 s, compared to
10 min, for line fitting methods. This method could be use-
ful for pseudo real-time analysis of MRSI data under par-
allel computing environment.
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